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Outline

1 Existentially definable, in particular Diophantine, sets
single-fold and finite-fold existential representations

2 Relations of exponential growth

3 Quaternary quartic “rule-them-all” equations. E.g., over N :
3
(
r2 + 3 s2

)2
−
(
u2 + 3 v2

)2
= 2

4 Integers expressible in a specific quadratic form, e.g. u2 + 3 v2

A novel quaternary quartic ( over Z ):
11

(
s2 + s r + 3 r2

)2
−
(
v2 + v u + 3 u2

)2
= 2

5 Is the exponential-growth relation{
〈u, y22 `+1(11)〉 : ` > 2 & u > 22 `+2

}
Diophantine?

�

11 y2 + 1 = �
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The finite-fold-ness issue

Eugenio G. Omodeo Further refl’ns on candidate “rule-them-all” equations 4/24



Generalized Diophantine rel’s and properties

A relation R ⊆ Nn is said to be existentially definable in terms
of some relation J (•, . . . , •) iff

R(a1, . . . , an) ⇐⇒
( ∃ x1 · · · ∃ xm )ϕ(

variables

︷ ︸︸ ︷
a1, . . . , an︸ ︷︷ ︸

parameters

, x1, . . . , xm︸ ︷︷ ︸

unknowns

)

holds, over N, for some formula ϕ that only involves :

the shown variables,

positive integer constants,

addition, multiplication,

the logical connectives & , ∨, ∃ x , =, and

a predicate for J .

————

When J is absent, R is also called Diophantine.
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Singlefold-ness

Single-fold existential definitions
An existential definition

∃ ~x ϕ( ~a , ~x )

( as above ) is said to be single-fold if

∀ ~a ∀ ~x ∀ ~y
[
ϕ( ~a , ~x ) & ϕ( ~a , ~y) =⇒ ~x = ~y

]

( i.e., ϕ( a1, . . . , an , x1, . . . , xm ) never has multiple solutions ).

Finite-fold existential definitions
The definition of finite-fold -ness is akin:

To each ~a there must correspond a finite number of solutions.
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Two important theorems
( Davis, Putnam, Robinson, Matiyasevich )

Now consider listable2 (aka effectively enumerable) sets.

DPR theorem (See [DPR61])

Each listable set is existentially definable in terms of exponentiation
( which is the rel. consisting of all triples 〈b , n , c〉 such that

bn = c ).

( One can also choose any fixed b > 2 )

Significant improvement to DPR (see [Mat74], [JM84])

Each listable set admits an existential single-fold repr’tion in terms
of exponentiation.

(See also [Dav93])

2Def. A set is listable if its elements can be generated exhaustively by an
algorithmic ( perhaps non-terminating ) procedure.
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Open p.: Does exponentiation admit a single-fold
(or at least finite-fold) Diophantine definition ?

‘‘After the DPR-theorem was proved in 1961, in order
to establish the existence of Diophantine representations
for every effectively enumerable set it was sufficient to
find a Diophantine representation for one particular
set of triples

{ 〈a, b, c〉 | a = bc } . (12)

Today we are in a similar position with respect to
single-fold (and finite-fold) Diophantine representations:
now that we can construct single-fold exponential Dio-
phantine representations for all effectively enumerable
sets, in order to transform them into single-fold
(or finite-fold) genuinely Diophantine representations,
it would be sufficient to find a single-fold (or, respectively,
finite-fold) Diophantine representation for the same set
of triples (12) · · · ”

[Mat10, p. 748]
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Relations of
exponential growth
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Dyadic exponential-growth relations

From now on, J will designate a relation such that

1 J (u, v) =⇒ v < uu ;

2 ∀ ` (∃ u , v)
[
J ( u , v ) & u` < v

]
.

After [Rob52], such a relation is said to be of exponential growth.

Historical example
:) Diophantine!

:)

Take

J =

{
〈u , F2u〉 | u > 1

}
,

where

F0 = 0 , F1 = 1 , F`+2 = F`+1 + F` ,

for ` = 0, 1, 2, . . . (See [Mat70b])
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Diophantine reduction of exponentiation
to any J of exponential growth [Rob52]

bn = c ⇐⇒ (∃w , h , a , d , ` , u , v , s , q , z)
[

(c − 1)2 + b + n = 0 ∨ c + b + (n − z − 1)2 = 0 ∨(
b > 1 & c = z + 1

& w > b & w > n & Q(w , h) = q2 & a > h & a > c

& u2 = (a2 b2 − 1) v2 + 1 & ` 6 d & bc = u/`c

& `2 = (a2 − 1)
(
n + (a − 1) s

)2
+ 1 & J (a, d)

)]

Here:
1 Q(x , y) = � =⇒ y > xx ;

2 ∀ x ∃ y Q(x , y) = � ;

e.g., Q � (x + 2)3 (x + 4) (y + 1)2 + 1 .

(See [MR75])
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Davis’s quaternary
quartic equation
and its siblings
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How many solutions has Davis’s eq.

9
(
u2 + 7 v2

)2
− 7

(
r2 + 7 s2

)2
= 2 ?

[Dav68] takes into account the sequence

y(7) =

〈yi 〉i∈N = 〈0, 3, 48, 640, . . .〉 ,

such that yi is the (i + 1)-st solution of the Pell equation

7 y2 + 1 = � .

Through the study of integers expressible in the form u2 + 7 v2,
Davis proves that the exponential-growth relation{

〈u , y2`〉 : ` > 0 & u > 2` & u > 16
}

�

y2`(7)

is Diophantine if the equation

9
(
u2 + 7 v2

)2
− 7

(
r2 + 7 s2

)2
= 2

has no solution in N except the trivial one: u = r = 1 , v = s = 0 .
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How many solutions has Davis’s eq.

9
(
u2 + 7 v2

)2
− 7

(
r2 + 7 s2

)2
= 2 ?

Nontrivial solutions exist [SW95]. . .

:(○ :) . . . Even so:

From [DMR76]: “It can be shown that a singlefold Diophantine
representation of a = 2c can be constructed if the equation

9
(
u2 + 7 v2

)2
− 7

(
r2 + 7 s2

)2
= 2

has only a finite number of solutions.”
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Quest for an alternative quaternary quartic

Upon Martin D.’s suggestion, we sought other candidates to the
role of

‘rule-them-all’ equation

Today there are four ( potentially eight ) competitors:
-2 2

(
r2 + 2 s2

)2
−
(
u2 + 2 v2

)2
= 1

-3 3
(
r2 + 3 s2

)2
−
(
u2 + 3 v2

)2
= 2

-7 9
(
u2 + 7 v2

)2
− 7

(
r2 + 7 s2

)2
= 2

-11 11
(
r2 + r s + 3 s2

)2
−
(
v2 + v u + 3 u2

)2
= 2 ( over Z )

Each of these stems from a square-free rational integer d > 1 such
that the integers of Q(

√
−d) form a unique-factorization domain.
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Solutions to our candidate rule-them-all eq’s
Trivial solutions
A solution in N, for each of the four candidates, is:

r = u = 1 , s = v = 0 .

When the discriminant is −11, the trivial solutions in Z are:
s = 0, r ∈ {−1, 1} and either v = 0, u ∈ {−1, 1} or u = 1, v = −1.

Non-trivial solutions ( in N )

At least 50 solutions were found for the discriminant −7.
Two non-trivial solutions for the discriminant −3 were detected,
and kindly communicated to us, by Boris Z. Moroz (Rheinische
Friedrich-Wilhelms-Universität Bonn) and Carsten Roschinski:

r = 16 , s = 25 , u = 4 , v = 35 ;
r = 124088 , s = 7307 , u = 134788 , v = 54097 .
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Integers represent-
able in the form
υ2 + υ u + 3 u2
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Discriminants and representable numbers

To each of our discriminants

−2 , −3 , −7 , −11 ,

there corresponds a notion of representable number ; to wit, a
positive integer which can be written in the respective quadratic
form:

-2 u2 + 2 v2

-3 u2 + 3 v2

-7 u2 + 7 v2

-11 v2 + v u + 3 u2

with u , v ∈ Z.

Clue: Things are so because the integers of an imaginary quadratic
field Q(

√
−d) form the ring:{

Z
[√

−d
]

if d ≡ 1, 2 (mod 4) ,
Z
[
(1+

√
−d) / 2

]
if d ≡ 3 (mod 4) .
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Poison primes and representability (when d = 11)

Call a prime number p poison if one of the following congruences
holds:

p ≡ 2 , 6 , 7 , 8 , 10 ( mod 11) .

Primes of the form υ2 + υ u + 3 u2

Every non-poison prime is so representable

Positive integers of the form υ2 + υ u + 3 u2

A positive integer x is so representable if and only if there is no
poison prime dividing it to an odd power
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Sol’ns of the form υ2 + υ u + 3 u2 to 11 y 2 + 1 = �
Now consider the increasing sequence 〈yi 〉i∈N = 〈0, 3, 60, 1197, . . .〉
of all solutions to the equation

11 y2 + 1 = � .

Then

(denoting by 〈xi 〉i∈N the associated seq. 〈1, 10, 199, 3970, . . .〉):
y2h , with h > 0, is representable as υ2 + υ u + 3 u2 iff 2 - h

if y2` (2 h+1) is representable, so are

coprime

︷ ︸︸ ︷
3 xh + 11 yh and xh + 3 yh

if yn is representable for some n > 0 not a power of 2, then
the system

X 2 − 11 Y 2 = 1 ,
3X + 11Y = υ2 + υ u + 3 u2 ,
X + 3Y = r2 + r s + 3 s2

has a solution in N for which Y 6= 0 ; ∴ , the eq.

11
(
r2 + r s + 3 s2

)2
−
(
υ2 + υ u + 3 u2

)2
= 2

has a solution
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11
(
r2 + r s + 3 s2

)2
−
(
υ2 + υ u + 3 u2

)2
= 2

has a solution with either
r2 + r s + 3 s2 6= 1 or υ2 + υ u + 3 u2 6= 3 .
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11
(
r2 + r s + 3 s2
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(
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r2 + r s + 3 s2

) (
υ2 + υ u + 3 u2

)
| yn .
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Is{
〈u, y22 `+1〉 : ` > 2 & u > 22 `+2

}
a Diophantine set?
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An exponential-growth relation

Consider the relation

OD(a, b) ⇐⇒Def (∃ x)
[
(2 x + 1)a = b

]
.

Then:

OD( u , y22 `+1 ) ⇐⇒ u > 22 `+2 & u | y22 `+1 ,

the relation
J ( u , w ) ⇐⇒Def w ∈ {y22 `+1 : ` > 2} & OD( u , w )

has exponential growth.

Is w ∈ {y22 `+1 : ` > 2}— and, consequently, J —Diophantine?
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An unproven assertion implying that
w ∈ {y22 `+1 : ` > 0} is Diophantine

The following are necessary and sufficient conditions in order that

w ∈ {y22 `+1 : ` > 0}

holds:

(i) w > 3
(ii) 11w2 + 1 = �
(iii) (∃ v , u) w = v2 ± v u + 3 u2

(iv) (r2 + r s + 3 s2) (v2 + vu + 3u2) - w
for any non-trivial integer solution to
11

(
r2 + r s + 3 s2

)2
−
(
υ2 + υ u + 3 u2

)2
= 2

:) :) :)

This results in a Diophantine specification if

“the number of solutions to this novel quaternary quartic is finite” !
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for any non-trivial integer solution to
11

(
r2 + r s + 3 s2

)2
−
(
υ2 + υ u + 3 u2

)2
= 2

:) :) :)

The only potential source of multiple-solutions here is

condition (III), which, anyhow, is finite-fold

Eugenio G. Omodeo Further refl’ns on candidate “rule-them-all” equations 22/24



Alternative formulation

The issue as whether

11
(
r2 ± r s + 3 s2

)2
−
(
v2 ± v u + 3 u2

)2
= 2

has only finitely many solutions over N can be recast as the
analogous problem concerning the system{

11 ξ2 − η2 = 2
ξ η = ν2 + ν t + 3 t2

over Z.

The existence of finite-fold Diophantine representations for all
listable sets thus reduces to the finitude of the set of integer points
lying on a specific surface.
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Thanks for your attention! ( References � )
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